Авторские права: © 2026 принадлежат авторам. Лицензиат: РНИМУ им. Н.И. Пирогова.
Статья размещена в открытом доступе и распространяется на условиях лицензии Creative Commons Attribution (CC BY).

ОБЗОР

СНК как платформа формирования современного медицинского специалиста. Возможности и перспективы применения искусственного интеллекта

А. А. Клименко1,2 , Ю. М. Саакян1
Информация об авторах

1 Российский национальный исследовательский медицинский университет имени Н. И. Пирогова (Пироговский Университет), Москва, Россия

2 Городская клиническая больница № 1 им. Н. И. Пирогова, Москва, Россия

ул. Островитянова, д.1, г. Москва, 117997, Россия; moc.liamg@yiruy.naykaas

Информация о статье

А. А. Клименко — концепция работы, сбор и обработка материала, написание текста, редактирование и утверждение окончательного текста статьи; Ю. М. Саакян — сбор и обработка материала, написание текста.

Статья получена: 18.08.2025 Статья принята к печати: 05.09.2025 Опубликовано online: 25.09.2025
|
  1. Yang Y, Cui YU, Wang YT, Xue P, Zhai XM, Qiao YL. [Interpretation of the WHO’s “Ethics and Governance of Artificial Intelligence for Health: Guidance on Large Multi-Modal Models” and its implications for China]. Zhonghua Yu Fang Yi Xue Za Zhi. 2025; 59(6): 960–969. DOI: 10.3760/cma.j.cn112150-20240709-00548.
  2. Almyranti M, Sutherland E, Ash N, Eiszele S. Artificial Intelligence and the Health Workforce: Perspectives from Medical Associations on AI in Health. OECD Artificial Intelligence Papers. 2024; 28. DOI: 10.1787/9a31d8af-en.
  3. Healthforce Center at UCSF. Artificial Intelligence and the Health Workforce: Implications for Education and Training. San Francisco (CA): University of California, 2023. [Электронный ресурс] Режим доступа: URL: https://healthforce.ucsf.edu.
  4. Budzyń K, Romańczyk M, Kitala D, et al. Endoscopist deskilling risk after exposure to artificial intelligence in colonoscopy: a multicentre, observational study. Lancet Gastroenterol Hepatol. 2025; 10(10): 896–903. DOI: 10.1016/S2468-1253(25)00133-5.
  5. Izquierdo-Condoy JS, Arias-Intriago M, Tello-De-la-Torre A, Busch F, Ortiz-Prado E. Generative Artificial Intelligence in Medical Education: Enhancing Critical Thinking or Undermining Cognitive Autonomy? J Med Internet Res. 2025; 27: e76340. DOI: 10.2196/76340.
  6. Longhini J, Rossettini G, Palese A. Digital Health Competencies Among Health Care Professionals: Systematic Review. J Med Internet Res. 2022; 24(8): e36414 DOI: 10.2196/36414.
  7. Jarva E, Oikarinen A, Andersson J, Pramila-Savukoski S, Hammarén M, Mikkonen K. Healthcare professionals’ digital health competence profiles and associated factors: A cross-sectional study. J Adv Nurs. 2024; 80(8): 3236–3252. DOI: 10.1111/jan.16096.
  8. Car J, Ong QC, et al. The Digital Health Competencies in Medical Education Framework: An International Consensus Statement Based on a Delphi Study. JAMA Netw Open. 2025; 8(1): e2453131. DOI: 10.1001/jamanetworkopen.2024.53131.
  9. Ma Y, Song Y, Balch JA, et al. Promoting AI Competencies for Medical Students: A Scoping Review on Frameworks, Programs, and Tools. arXiv preprint arXiv: 2407.18939. 2024.
  10. Gordon M, Daniel M, Ajiboye A, et al. A scoping review of artificial intelligence in medical education: BEME Guide No. 84. Med Teach. 2024; 46(7): 446–470. DOI: 10.1080/0142159X.2024.2314198.
  11. Свистушкин В. М., Морозова С. В., Савватеева Д. М. Роль студенческого научного кружка в формировании ценностных ориентаций личности будущего врача. Вестник оториноларингологии. 2017; 82(1):78–80. DOI: 10.17116/otorino201782178-80.
  12. Новгородова С. Д., Фельдблюм И. В., Алыева М. Х. Студенческий научный кружок как инструмент подготовки современного врача. Эпидемиология и инфекционные болезни. Актуальные вопросы. 2018; 3: 92–96. DOI: 10.18565/epidem.2018.3.92-6.
  13. Федулаев Ю. Н., Орлова Н. В., Каминер Д. Д., Чупракова А. Ю., Савина Д. В., Ломайчиков В. В., Пинчук Т. В. Роль студенческого научного кружка в структуре высшего медицинского образования. Медицинское образование и профессиональное развитие. 2020; 11(2): 26–39. DOI: 10.24411/2220-8453-2020-12002.
  14. World Federation for Medical Education. Basic Medical Education: WFME Global Standards for Quality Improvement. 2020 revision. Ferney-Voltaire: WFME, 2020.
  15. World Health Organization. Ethics and Governance of Artificial Intelligence for Health: WHO Guidance. Geneva: WHO, 2021.
  16. World Health Organization. Ethics and Governance of Artificial Intelligence for Health: Guidance on Large Multi-Modal Models. Geneva: WHO, 2024.
  17. Dydykin S, Kapitonova M. The role of student surgical interest groups and surgical Olympiads in anatomical and surgical undergraduate training in Russia. Anat Sci Educ. 2015; 8(5): 471–477. DOI: 10.1002/ase.1523.
  18. Kim S, Jeong H, Cho H, Yu J. Extracurricular activities in medical education: an integrative literature review. BMC Med Educ. 2023; 23(1): 278. DOI: 10.1186/s12909-023-04245-w.
  19. Fujii RNA, Enns SC, Tempski ZP. Medical Students’ Participation in Extracurricular Activities: Motivations, Contributions, and Barriers. A Qualitative Study. Adv Med Educ Pract. 2022; 13: 1133–1141. DOI: 10.2147/AMEP.S359047.
  20. Urlings-Strop LC, Stijnen T, Themmen APN, Steyerberg EW. The relationship between extracurricular activities assessed during selection and during medical school and performance. Adv Health Sci Educ Theory Pract. 2017; 22(2): 287–298. DOI: 10.1007/s10459-016-9729-y.
  21. Ivanova GP, Logvinova OK. Extracurricular Activities at Modern Russian University: Student and Faculty Views. Eurasia J Math Sci Technol Educ. 2017; 13(11): 7431–7439. DOI: 10.12973/ejmste/79797.
  22. Pirogov Russian National Research Medical University. Student Scientific Society. Higher Education Discovery (HED). 2023; 4(24).
  23. Chan KS, Zary N, et al. Applications and Challenges of Implementing Artificial Intelligence in Medical Education: Integrative Review. JMIR Med Educ. 2019; 5(1): e13930. DOI: 10.2196/13930.
  24. Masters K, Ellaway R. e-Learning in medical education Guide 32 Part 2: Technology, management and design. Med Teach. 2008; 30(5): 474–489. DOI: 10.1080/01421590802108349.
  25. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019; 25(1): 44–56. DOI: 10.1038/s41591-018-0300-7.
  26. Natali C, Marconi L, Dias Duran LD, et al. AI-induced Deskilling in Medicine: A Mixed-Method Review and Research Agenda for Healthcare and Beyond. Artif Intell Rev. 2025; 58(356). DOI: 10.1007/s10462-025-11352-1.
  27. Hosseini SM. AI misuse and passiveness of students in medical education. Adv Physiol Educ. 2025; 49(4):1009–1013. DOI: 10.1152/advan.00164.2025.
  28. Hopson S, Mildon C, Hassard K, Kubalek C, Laverty L, Urie P, Della Corte D. Enhancing AI literacy in undergraduate pre-medical education through student associations: an educational intervention. BMC Med Educ. 2025; 25(1): Art. 999. DOI: 10.1186/s12909-025-07556-2.
  29. University of South Carolina School of Medicine. AI in Medicine Extracurricular Track: curriculum description 2023–2025 [Электронный ресурс] Режим доступа: https://sc.edu/study/colleges_schools/medicine/education/md_program/curriculum/ai_in_medicine/ (дата обращения: 17.07.2025).