Copyright: © 2026 by the authors. Licensee: Pirogov University.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (CC BY).

REVIEW

An academic research club as a platform to sculpt modern medical specialists. Possibilities and perspectives of using artificial intelligence

Klimenko AA1,2 , Saakyan YM1
About authors

1 Pirogov Russian National Research Medical University (Pirogov University), Moscow, Russia

2 Pirogov City Clinical Hospital No. 1, Moscow, Russia

Ostrovityanova St., 1, Moscow, 117997, Russia; moc.liamg@yiruy.naykaas

About paper

KlimenkoAA —concept development, data collection and analysis, text writing, editing, and approval of the final manuscript; Saakyan YuM— data collection and analysis, text writing

Received: 2025-08-18 Accepted: 2025-09-05 Published online: 2025-09-25
|
  1. Yang Y, Cui YU, Wang YT, Xue P, Zhai XM, Qiao YL. [Interpretation of the WHO’s “Ethics and Governance of Artificial Intelligence for Health: Guidance on Large Multi-Modal Models” and its implications for China]. Zhonghua Yu Fang Yi Xue Za Zhi. 2025; 59(6):960–969. DOI: 10.3760/cma.j.cn112150-20240709-00548.
  2. Almyranti M, Sutherland E, Ash N, Eiszele S. Artificial Intelligence and the Health Workforce: Perspectives from Medical Associations on AI in Health. OECD Artificial Intelligence Papers. 2024; 28. DOI: 10.1787/9a31d8af-en.
  3. Healthforce Center at UCSF. Artificial Intelligence and the Health Workforce: Implications for Education and Training. San Francisco (CA): University of California. 2023. Available from URL: https://healthforce.ucsf.edu. (accessed: 17.07.2025).
  4. Budzyń K, Romańczyk M, Kitala D, et al. Endoscopist deskilling risk after exposure to artificial intelligence in colonoscopy: a multicentre, observational study. Lancet Gastroenterol Hepatol. 2025; 10(10): 896–903. DOI: 10.1016/S2468-1253(25)00133-5.
  5. Izquierdo-Condoy JS, Arias-Intriago M, Tello-De-la-Torre A, Busch F, Ortiz-Prado E. Generative Artificial Intelligence in Medical Education: Enhancing Critical Thinking or Undermining Cognitive Autonomy? J Med Internet Res. 2025; 27: e76340. DOI: 10.2196/76340.
  6. Longhini J, Rossettini G, Palese A. Digital Health Competencies Among Health Care Professionals: Systematic Review. J Med Internet Res. 2022; 24(8): e36414 DOI: 10.2196/36414.
  7. Jarva E, Oikarinen A, Andersson J, Pramila-Savukoski S, Hammarén M, Mikkonen K. Healthcare professionals’ digital health competence profiles and associated factors: A cross-sectional study. J Adv Nurs. 2024; 80(8): 3236–3252. DOI: 10.1111/jan.16096.
  8. Car J, Ong QC, et al. The Digital Health Competencies in Medical Education Framework: An International Consensus Statement Based on a Delphi Study. JAMA Netw Open. 2025; 8(1): e2453131. DOI: 10.1001/jamanetworkopen.2024.53131.
  9. Ma Y, Song Y, Balch JA, et al. Promoting AI Competencies for Medical Students: A Scoping Review on Frameworks, Programs, and Tools. arXiv preprint arXiv: 2407.18939. 2024.
  10. Gordon M, Daniel M, Ajiboye A, et al. A scoping review of artificial intelligence in medical education: BEME Guide No. 84. Med Teach. 2024; 46(7): 446–470. DOI: 10.1080/0142159X.2024.2314198.
  11. Svistushkin VM, Morozova SV, Savvateyeva DM. Rol’ studencheskogo nauchnogo kruzhka v tsentre tsennostnykh oriyentatsiy lichnosti budushchego vracha. Vestnik otorinolaringologii. 2017; 82(1): 78–80. DOI: 10.17116/otorino201782178-80. Russian.
  12. Novgorodova SD, Fel’dblyum IV, Alyyeva MKh. Studencheskiy nauchnyy kruzhok kak instrument podgotovki sovremennogo vracha. Epidemiologiya i infektsionnyye bolezni. Aktual’nyye voprosy. 2018; 3: 92–96. DOI: 10.18565/epidem.2018.3.92-6. Russian.
  13. Fedulayev YuN, Orlova NV, Kaminer DD, Chuprakova AYu, Savina DV, Lomaychikov VV, Pinchuk TV. Rol’ studencheskogo nauchnogo kruzhka v vysshem meditsinskom obrazovanii. Meditsinskoye obrazovaniye i professional’noye razvitiye. 2020; 11 (2): 26–39. DOI: 10.24411/2220-8453-2020-12002. Russian.
  14. World Federation for Medical Education. Basic Medical Education: WFME Global Standards for Quality Improvement. 2020 revision. Ferney-Voltaire: WFME, 2020.
  15. World Health Organization. Ethics and Governance of Artificial Intelligence for Health: WHO Guidance. Geneva: WHO, 2021.
  16. World Health Organization. Ethics and Governance of Artificial Intelligence for Health: Guidance on Large Multi-Modal Models. Geneva: WHO, 2024.
  17. Dydykin S, Kapitonova M. The role of student surgical interest groups and surgical Olympiads in anatomical and surgical undergraduate training in Russia. Anat Sci Educ. 2015; 8(5): 471–477. DOI: 10.1002/ase.1523.
  18. Kim S, Jeong H, Cho H, Yu J. Extracurricular activities in medical education: an integrative literature review. BMC Med Educ. 2023; 23(1): 278. DOI: 10.1186/s12909-023-04245-w.
  19. Fujii RNA, Enns SC, Tempski ZP. Medical Students’ Participation in Extracurricular Activities: Motivations, Contributions, and Barriers. A Qualitative Study. Adv Med Educ Pract. 2022; 13: 1133–1141. DOI: 10.2147/AMEP.S359047.
  20. Urlings-Strop LC, Stijnen T, Themmen APN, Steyerberg EW. The relationship between extracurricular activities assessed during selection and during medical school and performance. Adv Health Sci Educ Theory Pract. 2017; 22(2): 287–298. DOI: 10.1007/s10459-016-9729-y.
  21. Ivanova GP, Logvinova OK. Extracurricular Activities at Modern Russian University: Student and Faculty Views. Eurasia J Math Sci Technol Educ. 2017; 13(11): 7431–7439. DOI: 10.12973/ejmste/79797.
  22. Pirogov Russian National Research Medical University. Student Scientific Society. Higher Education Discovery (HED). 2023; 4(24).
  23. Chan KS, Zary N, et al. Applications and Challenges of Implementing Artificial Intelligence in Medical Education: Integrative Review. JMIR Med Educ. 2019; 5(1): e13930. DOI: 10.2196/13930.
  24. Masters K, Ellaway R. e-Learning in medical education Guide 32 Part 2: Technology, management and design. Med Teach. 2008; 30(5): 474–489. DOI: 10.1080/01421590802108349.
  25. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019; 25(1): 44–56. DOI: 10.1038/s41591-018-0300-7.
  26. Natali C, Marconi L, Dias Duran LD, et al. AI-induced Deskilling in Medicine: A Mixed-Method Review and Research Agenda for Healthcare and Beyond. Artif Intell Rev. 2025; 58(356). DOI: 10.1007/s10462-025-11352-1.
  27. Hosseini SM. AI misuse and passiveness of students in medical education. Adv Physiol Educ. 2025; 49(4): 1009–1013. DOI: 10.1152/advan.00164.2025.
  28. Hopson S, Mildon C, Hassard K, Kubalek C, Laverty L, Urie P, Della Corte D. Enhancing AI literacy in undergraduate pre-medical education through student associations: an educational intervention. BMC Med Educ. 2025; 25(1): Art. 999. DOI: 10.1186/s12909-025-07556-2.
  29. University of South Carolina School of Medicine. AI in Medicine Extracurricular Track: curriculum description 2023–2025 Available from URL: https://sc.edu/study/colleges_schools/medicine/education/md_program/curriculum/ai_in_medicine/ (accessed: 17.07.2025).